Multi-planetary systems, Saturn's Rings and the collisional N-body code REBOUND

 Hanno Rein @ McGill, November 20II
Planet formation

Migration in a non-turbulent disc

Gap opening criteria

Disc scale height

Migration - Type I

- Low mass planets
- No gap opening in disc
- Migration rate is fast
- Depends strongly on thermodynamics of the disc

Migration - Type II

- Massive planets (typically bigger than Saturn)
- Opens a (clear) gap
- Migration rate is slow
- Follows viscous evolution of the disc

Migration - Type III

- Massive disc
- Intermediate planet mass
- Ties to open gap
- Very fast, few orbital timescales

Resonance capture

2:I Mean Motion Resonance

2:I Mean Motion Resonance

2:I Mean Motion Resonance

Resonant angles

- Fast varying angles

$$
\lambda_{1}-\varpi_{1} \quad \lambda_{2}-\varpi_{2}
$$

- Slowly varying combinations

$$
\begin{aligned}
\phi_{1} & =\lambda_{2}-2 \lambda_{1}+\varpi_{2} \\
\phi_{2} & =\lambda_{2}-2 \lambda_{1}+\varpi_{1} \\
\Delta \varpi & =\varpi_{1}-\varpi_{2}
\end{aligned}
$$

- Two are linear independent

Non-turbulent resonance capture: two planets

$$
\phi_{1}=\lambda_{2}-2 \lambda_{1}+\varpi_{2}
$$

GJ 876

Lee \& Peale 2002

Take home message I

planet + disc $=$ migration
2 planets + migration $=$ resonance

HD 45364

HD45364

Pluto
Mercury
Mars
Venus
Earth
Neptune
Uranus
Saturn

Formation scenario for HD45364

- Two migrating planets
- Infinite number of resonances .2 $7: 8$

- Migration speed is crucial
- Resonance width and libration period define critical migration rate

Formation scenario for HD45364

Rein, Papaloizou \& Kley 2010

Formation scenario for HD45364

Massive disc (5 times MMSN)

- Short, rapid Type III migration
- Passage of 2:I resonance
- Capture into $3: 2$ resonance

Large scale-height (0.07)

- Slow Type I migration once in resonance
- Resonance is stable
- Consistent with radiation hydrodynamics

Formation scenario leads to a better 'fit'

Parameter	Unit	Correia et al. (2009)	Simulation F5 b
$M \sin i$	[M ${ }_{\text {Jup }}$]	0.18720 .6579	0.18720 .6579
M_{*}	M_{\odot}]	0.82	0.82
a	AU]	$0.6813 \quad 0.8972$	$0.6804 \quad 0.8994$
e		$0.17 \pm 0.02 \quad 0.097 \pm 0.012$	$0.036 \quad 0.017$
λ	[deg]	$105.8 \pm 1.4 \quad 269.5 \pm 0.6$	352.5153 .9
ϖ^{a}	[deg]	$162.6 \pm 6.3 \quad 7.4 \pm 4.3$	$87.9 \quad 292.2$
$\sqrt{\chi^{2}}$		$\begin{gathered} 2.79 \\ 2453500 \end{gathered}$	$\begin{gathered} 2.76^{b}(3.51) \\ 2453500 \end{gathered}$
Date	[JD]		

Rein, Papaloizou \& Kley 2010

Migration in a turbulent disc

Turbulent disc

- Angular momentum transport
- Magnetorotational instability (MRI)
- Density perturbations interact gravitationally with planets
- Stochastic forces lead to random walk
- Large uncertainties in strength of forces

Animation from Nelson \& Papaloizou 2004 Random forces measured by Laughlin et al. 2004, Nelson 2005, Oischi et al. 2007

Random walk

semi-major axis

time

Rein \& Papaloizou 2009

Correction factors are important

$$
\begin{aligned}
& (\Delta a)^{2}=4 \frac{D t}{n^{2}} \\
& (\Delta \varpi)^{2}=\frac{2.5}{e^{2}} \frac{\gamma D t}{n^{2} a^{2}} \\
& (\Delta e)^{2}=2.5 \frac{\gamma D t}{n^{2} a^{2}}
\end{aligned}
$$

Rein \& Papaloizou 2009, Adams et al 2009, Rein 2010

Two planets: turbulent resonance capture

Rein \& Papaloizou 2009

Multi-planetary systems in mean motion resonance

- Stability of multi-planetary systems depends strongly on diffusion coefficient
- Most planetary systems are stable for entire disc lifetime

Modification of libration patterns

- HDI283II has a very peculiar libration pattern
- Can not be reproduced by convergent migration alone
- Turbulence can explain it
- More multi-planetary systems needed for statistical argument

HD200964

The impossible system?

Radial velocity curve of HD200964

- Two massive planets I. $8 \mathrm{M}_{\text {jup }}$ and $0.9 \mathrm{M}_{\mathrm{jup}}$
- Period ratio either 3:2 or 4:3
- Another similar system, to be announced soon
- How common is $4: 3$?
- Formation?

Standard disc migration doesn't work

Hydrodynamical simulations

Stability of HD200964

HD200964

- In situ formation?
- Main accretion while in 4:3 resonance?
- Planet planet scattering?
- A third planet?
- Observers screwed up?

Take home message II

dynamical state of planetary systems \longleftrightarrow
 formation scenario

Moonlets in Saturn's Rings

Cassini spacecraft

NASA/JPL/Space Science Institute

Propeller structures in A-ring

Porco et al. 2007, Sremcevic et al. 2007, Tiscareno et al. 2006

Longitude residual

Mean motion [rad/s]

$$
n=\sqrt{\frac{G M}{a^{3}}}
$$

Mean longitude [rad]

$\lambda=n t$

$$
\lambda(t)-\lambda_{0}(t)=\int_{0}^{t}\left(n_{0}+n^{\prime}\left(t^{\prime}\right)\right) d t^{\prime}-\underbrace{\int_{0}^{t} n_{0} d t^{\prime}}_{n_{0} t}
$$

Observational evidence of non-Keplerian motion

Random walk

Analytic model

$$
\begin{aligned}
\Delta a & =\sqrt{4 \frac{D t}{n^{2}}} \\
\Delta e & =\sqrt{2.5 \frac{\gamma D t}{n^{2} a^{2}}}
\end{aligned}
$$

Describing evolution in a statistical manner Partly based on Rein \& Papaloizou 2009

N -body simulations
Measuring random forces or integrating moonlet directly Crida et al 2010, Rein \& Papaloizou 2010

Random walk

REBOUND code, Rein \& Papaloizou 2010, Crida et al 2010

Work in progress: a statistical measure

Take home message III

Saturn's rings =

small scale version of a proto-planetary disc

REBOUND

A new open source collisional N-body code

Numerical Integrators

- We want to integrate the equations of motions of a particle

$$
\begin{aligned}
\dot{x} & =v \\
\dot{v} & =a(x, v)
\end{aligned}
$$

- For example, gravitational potential

$$
a(x)=-\nabla \Phi(x)
$$

- In physics, these can usually be derived from a Hamiltonian

$$
H=\frac{1}{2} p^{2}+\Phi(x)
$$

- Symmetries of the Hamiltonian correspond to conserved quantities

Numerical Integrators

- Discretization

$$
\begin{aligned}
& \dot{x}=v \\
& \dot{v}=a(x, v)
\end{aligned} \quad \longrightarrow \quad \begin{aligned}
& \Delta x=v \Delta t \\
& \Delta v=a(x, v) \Delta t
\end{aligned}
$$

- Hamiltonian

$$
H=\frac{1}{2} p^{2}+\Phi(x) \longrightarrow ?
$$

- The system is governed by a 'discretized Hamiltonian', if and only if the integration scheme is symplectic.
-Why does it matter?

Symplectic vs non symplectic integrators

Mixed variable integrators

- So far: symplectic integrators are great.
- How can it be even better?
- We can split the Hamiltonian:

$$
H=H_{0}+\epsilon H_{\text {pert }}
$$

Integrate particle exactly with dominant Hamiltonian

Integrate particle exactly under perturbation Hamiltonian

- Switch back and forth between different Hamiltonians
- Often uses different variables for different parts
- Then:

$$
\text { Error }=\epsilon(\Delta t)^{p+1}\left[H_{0}, H_{\mathrm{pert}}\right]
$$

Example: Leap-Frog

$$
\begin{array}{r}
H=\frac{1}{2} p^{2}+\Phi(x) \\
\text { Drift Kick }
\end{array}
$$

I/2 Drift
Kick
I/2 Drift

Example: SWIFT/MERCURY

$$
H=\frac{1}{2} p^{2}+\Phi_{\text {Kepler }}(x)+\Phi_{\text {Other }}(x)
$$

I/2 Kick

Kepler
I/2 Kick

Example: Symplectic Epicycle Integrator

$$
H=\frac{1}{2} p^{2}+\Omega(p \times r) e_{z}+\frac{1}{2} \Omega^{2}\left[r^{2}-3\left(r \cdot e_{x}\right)^{2}\right]+\begin{aligned}
& \Phi(r) \\
& \text { Kpicycle }
\end{aligned}
$$

I/2 Kick

Epicycle

I/2 Kick

I0 Orders of magnitude better!

mixed variable, symplectic

Rein \& Tremaine 201I

Take home message IV

symplectic integrators

awesome

REBOUND

- Multi-purpose N-body code
- Optimized for collisional dynamics
- Code description paper recently accepted by A\&A
- Written in C, open source
- Freely available at http://github.com/hannorein/rebound

REBOUND modules

Geometry

- Open boundary conditions
- Periodic boundary conditions
- Shearing sheet / Hill's approximation

Integrators

- Leap frog
- Symplectic Epicycle integrator (SEI)
-Wisdom-Holman mapping (WH)

Gravity

- Direct summation, $\mathrm{O}\left(\mathrm{N}^{2}\right)$
- BH-Tree code, $\mathrm{O}(\mathrm{N} \log (\mathrm{N}))$
- FFT method, $\mathrm{O}(\mathrm{N} \log (\mathrm{N}))$

Collision detection

- Direct nearest neighbor search, $\mathrm{O}\left(\mathrm{N}^{2}\right)$
- BH-Tree code, $\mathrm{O}(\mathrm{N} \log (\mathrm{N}))$
- Plane sweep algorithm, $\mathrm{O}(\mathrm{N})$ or $\mathrm{O}\left(\mathrm{N}^{2}\right)$

REBOUND

DEMO

REBOUND scalings using a tree

strong

weak

Take home message IIV

Download REBOUND

Conclusions

Conclusions

Resonances and multi-planetary systems

Multi-planetary system provide insight in otherwise unobservable formation phase
GJ876 formed in the presence of a disc and dissipative forces
HDI283II formed in a turbulent disc
HD45364 formed in a massive disc
HD200964 did not form at all

Moonlets in Saturn's rings

Small scale version of the proto-planetary disc
Random walk can be directly observed
Caused by collisions and gravitational wakes

REBOUND

N -body code, optimized for collisional dynamics, uses symplectic integrators
Open source, freely available, very modular and easy to use
http://github.com/hannorein/rebound

